When the United Arab Emirates launched the Arab world’s first-ever mission to Mars in the summer of 2020, its desire was that its Hope probe would help provide scientists with a better understanding of the Red Planet’s weather systems. And it’s now done exactly that. According to The National, the probe recently spent two weeks tracking a massive dust storm across the surface of Mars.Hope began following the weather event on December 29th. The probe entered the orbit of Mars equipped with a high-resolution camera and an infrared spectrometer. It used those tools to track the geographic distribution of dust, water vapor and carbon dioxide ice clouds displaced by the raging storm. Its orbital position allowed Hope to observe any variance in those elements in timescales measured in minutes and days, a feat previous missions to Mars didn’t have the ability to do. What it saw was how quickly a storm can spread across the red planet. In the span of a single week, the storm it was tracking grew to stretch across more than 1,550 miles of Martian surface. In the process, it completely obscured geographic landmarks like the Hellas impact crater and sent dust haze as far as 2,485 miles away from the origin point of the storm. In addition to providing a play-by-play of a Martian storm, scientists hope the data Hope collected will allow them to gain a better understanding of how those storms can help water escape the planet’s atmosphere.

When the United Arab Emirates launched the Arab world’s first-ever mission to Mars in the summer of 2020, its desire was that its Hope probe would help provide scientists with a better understanding of the Red Planet’s weather systems. And it’s now done exactly that. According to The National, the probe recently spent two weeks tracking a massive dust storm across the surface of Mars.

Hope began following the weather event on December 29th. The probe entered the orbit of Mars equipped with a high-resolution camera and an infrared spectrometer. It used those tools to track the geographic distribution of dust, water vapor and carbon dioxide ice clouds displaced by the raging storm. Its orbital position allowed Hope to observe any variance in those elements in timescales measured in minutes and days, a feat previous missions to Mars didn’t have the ability to do. 

What it saw was how quickly a storm can spread across the red planet. In the span of a single week, the storm it was tracking grew to stretch across more than 1,550 miles of Martian surface. In the process, it completely obscured geographic landmarks like the Hellas impact crater and sent dust haze as far as 2,485 miles away from the origin point of the storm. In addition to providing a play-by-play of a Martian storm, scientists hope the data Hope collected will allow them to gain a better understanding of how those storms can help water escape the planet’s atmosphere.

Read More

Leave a Reply